If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+48t+20=0
a = -16; b = 48; c = +20;
Δ = b2-4ac
Δ = 482-4·(-16)·20
Δ = 3584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3584}=\sqrt{256*14}=\sqrt{256}*\sqrt{14}=16\sqrt{14}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-16\sqrt{14}}{2*-16}=\frac{-48-16\sqrt{14}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+16\sqrt{14}}{2*-16}=\frac{-48+16\sqrt{14}}{-32} $
| 1/8x+8=14 | | a+3/5=-11 | | 0.1(x-131)=-2(2-x) | | 1/3x=x-24 | | 20=4p+6 | | 4^(x+1)=22 | | 2/3x+50=330 | | 19+2.50h=11+3.75h | | 3x+21/7=6 | | X^2+18x-29=10 | | 2d+1÷5=3÷5 | | s^2s-6=0 | | 10+3y=-10+7y | | -3v-5(2-4v)=24 | | 6x–1=-7. | | 6n-3+n=18 | | 14-2d=4 | | 5x(x+2)-3=0 | | g/12-4=7 | | 2(x-1)-5(2x+3)=17 | | 6n+3-n=18 | | 35+30h=125 | | 10=7+3y | | 2/3x=x-24 | | (3x+21)/7=6 | | 9g=3(-4+5g)9g=3(−4+5g) | | x/2+x-3/5=3 | | -2c=-7−c | | -3(x+4)=2(-2x+1) | | -35+5x=0 | | x-84=6(2x+3)-14 | | 3=c-18 |